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ABSTRACT. Until recently, one-way single link transmission was considered i.e where a
single transmitter and a single receiver are involved. However, practical applications are almost
always based on multilink multiway systems, where a (possibly very large) number of transmit-
ters and receivers exchange information through some shared transmission media. We refer to
these systems as multiuser systems, where a “user” denotes an abstract entity responsible of
communicating over the system (both transmitting to and receiving from one or more termi-
nals). In these notes, we will introduce some wireless multi-user communication features and
discuss their performance. CDMA is used as a benchmark case in the sense that all other vector
channel cases (Virtual MIMO, cooperative communications, ad-hoc networks,..) can be treated
in this setting with some slight modifications.

1 Introduction

We distinguish between point-to-point networks and systems in which users share a common
transmission resource (see Fig. 1). Point-to-point networks are defined by a set of one-way or
two-way links between nodes. Problems related to these type of networks are topology, routing,
switching, congestion control, etc... [1]. These types of networks are based on cooperative
communications: since a direct link between a given transmitter-receiver pair may not exist,
intermediate nodes act as relays in order to allow the desired communication between any
sender-receiver pair. Shared-resource systems are simply defined by sets of transmitters and
receivers all connected to the same physical channel. Therefore, a direct link between any
transmitter and any receiver is always possible. However, users generate mutual interference
that may impair reliable communication. Then, some multiple access technique must be used
to cope with the destructive effect of interference.

Most wireless communication systems (in particular, cellular systems) belong to the class of
shared-resource systems, where the shared resource is the system radio channel. A key concept
of wireless networks is the exploitation of the spatial component. Because of attenuation (a
rapidly increasing function of the distance between transmitter and receiver) two users suffi-
ciently separated in space can share the same bandwidth without causing mutual interference.
This consideration leads to the so called “frequency reuse” in cellular systems: the total system
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Figure 1: Point-to-point versus shared-resource network topologies.

bandwidth is partitioned into m disjoint subbands. These are allocated to the cells in a way
such that two cells reusing the same subband have a given minimum space separation that guar-
antees sufficiently low mutual interference. The choice of the optimal reuse factor m depends on
the type of modulation and coding used for transmission and on the environment propagation
characteristics.

2 Duplexing and multiple access

In cellular systems we identify two sets of terminals: base stations (BS) and mobile terminals
(MT). The link from BS to MT is called downlink and the link from MT to BS is called uplink, and
the way of sharing the transmission resource between uplink and downlink is called duplexing.
There are two main duplexing schemes: frequency-division duplexing (FDD) and time-division
duplexing (TDD).

In FDD, uplink and downlink are assigned to two separate frequency bands. In this way, no
particular synchronization between terminals is needed in order to avoid interference between
uplink and downlink. However, operating ad different frequency bands requires normally a
more complicated hardware. In TDD, uplink and downlink are assigned to the same frequency
band, but to different time slots. In order to avoid interference between uplink and downlink,
all terminals must be approximately synchronized to a common time reference (need for BSs
synchronization). Also, MTs located in different positions in their cell have different propagation
delays. In order to be able to align their uplink slots, their relative delay must be very small
with respect to the slot duration. Therefore, TDD can be effectively implemented only for cells
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Figure 2: FDD and TDD schemes on the time-frequency plane.

of small size (indoor, picocells, microcells). Fig. 2 gives a graphical representation of FDD and
TDD on the time-frequency plane.

Let K be the number of users (i.e., active communication links) in either directions. Multiple
access techniques can be divided into orthogonal and non-orthogonal.

2.1 Orthogonal multiple access

Multiple Access Interference (MAI) is avoided by making the users orthogonal in frequency
(frequency division multiple access, or FDMA) in time (time-division multiple access, or TDMA)
in time-frequency (TDMA with frequency hopping, or FH-TDMA) or, more in general, in the
signal space (orthogonal code-division multiple access, or orthogonal CDMA).

In FDMA, users are assigned to K different subbands. In TDMA, users are assigned to K
different time slots. In orthogonal CDMA, a set of K orthogonal signals {s1(t), . . . , sK(t)} is
chosen and signal sk(t) is assigned to user k (sk(t) is referred to as the signature of user k). Each
user k transmit a linearly modulated signal in the form:

xk(t) =
∑

n

ak,nsk(t− nT ) (1)

where ak,n are complex modulation symbols. If the users are synchronous and their propagation
channel is just a constant multiplicative gain ck, the received signal is given by

y(t) =
K∑

k=1

ckxk(t) + ν(t)
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Figure 3: FDMA, TDMA and FH-TDMA in the time-frequency plane, with K = 4 users.

where ν(t) is the background AWGN, with power spectral density N0. The receiver for user k is
based on a filter matched to user k only, with impulse response 1√

Ek
sk(−t)∗, where Ek = ‖sk(t)‖2.

Assuming the following conditions:

1. Zero ISI:
∫

sk(t)sk(t− nT )∗dt = Ekδn,0.

2. Zero MAI:
∫

sk(t)sj(t− nT )∗dt = Ekδk,j .

the output of a filter matched to the k-th user signature waveform, sampled at the symbol rate,
yields

yk,n =
√

Ekckak,n + νk,n

where νk,n ∼ NC(0, N0).

2.2 Non-orthogonal multiple access

Non-orthogonal multiple access schemes do not try to avoid MAI but cope with it and “separate”
the user information messages by using signal processing at the receiver, channel coding and
random access protocols, or any combination of these. In this chapter we consider only signal
processing and channel coding techniques (see [1] for a presentation of random access protocols).

Non-orthogonal multiple access can be seen as a generalization of orthogonal CDMA. User sig-
nals have still the form (1), but the user signature waveforms are no longer mutually orthogonal.
The waveforms sk(t) are chosen to have a large time-bandwidth product, so that these systems
are normally referred to as spread-spectrum and the access scheme is called Spread-Spectrum
Multiple Access (SSMA).
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Figure 4: An example of orthogonal CDMA system with K = 4 users.

The continuous-time received signal is given by

y(t) =
K∑

k=1

∫
ck(t, τ)xk(t− τ)dτ + ν(t) (2)

Under the usual assumption of discrete multipath and slowly-varying fading we have

∫
ck(t, τ)xk(t− τ)dτ =

∑
n

P−1∑

p=0

ck,p,nak,nsk(t− nT − τk,p) (3)

where ck,p,n is the p-th path gain of user k channel around the n-th symbol interval and τk,p is
the p-th path delay of user k channel.

A technique for SSMA particularly important for wireless cellular applications is Direct-
Sequence CDMA (DS-CDMA) [2] (for example, this is the technique used in IS-95 and in
the UMTS standards). Fig. 5 represents a typical block diagram of a DS-CDMA transmission
scheme for a generic user k. A channel encoder produces code words xk. Code words are in-
terleaved, as in single-user transmission. The sequence of interleaved symbols ak,n is fed into a
repetition encoder of length L, so that

. . . , ak,n−1, ak,n, ak,n+1, . . .

is turned into
. . . , ak,n−1, . . . , ak,n−1︸ ︷︷ ︸

L times

, ak,n, . . . , ak,n︸ ︷︷ ︸
L times

, ak,n+1, . . . , ak,n+1︸ ︷︷ ︸
L times

, . . .
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Repeated symbols are called “chips”. The chips produced by repetition encoding are multiplied
chipwise by a pseudo-random sequence of chips sk,`,n, for n ∈ Z and ` = 0, . . . , L − 1, called
spreading sequence or signature sequence of user k. The `-th chip of the n-th symbol interval of
the resulting sequence is given by

bk,`,n = ak,nsk,`,n (4)

Finally, the sequence bk,`,n is linearly modulated to generate the transmit signal complex complex
envelope

xk(t) =
∑

n

L−1∑

`=0

bk,`,nψ(t− nT − `Tc) (5)

where ψ(t) is the chip-shaping pulse, T is the symbol interval and Tc = T/L is the chip interval.
Normally, ψ(t) satisfies the Nyquist criterion with respect to the chip interval, i.e.,

∫
ψ(t)ψ(t−

nTc)dt = δ0,n, where we assume ‖ψ(t)‖2 = 1.
Spreading sequences might be periodic or aperiodic. In the case of periodic spreading, sk,`,n =

sk,` for all n ∈ Z and user k is identified by the sequence of length L sk = (sk,0, . . . , sk,L−1)T .
In this case, xk(t) can be written as

xk(t) =
∑

n

ak,nsk(t− nT ) (6)

where

sk(t) =
L−1∑

`=0

sk,`ψ(t− `Tc) (7)

Since the two-sided bandwidth of ψ(t) is about 1/Tc and the duration of sk(t) is of the order of
LTc = T , the time-bandwidth product of signature signals is ≈ T/Tc = L. In usual DS-CDMA,
L À 1 (e.g., from 16 to 256 and more), and the system is Spread Spectrum.

3 DS-CDMA with conventional detection

For simplicity, we treat the case of periodic spreading. Generalization to aperiodic spreading
is trivial. The received signal given by the superposition of K DS-CDMA users plus AWGN is
given by (see (2) and (3))

y(t) =
K∑

k=1

∑
n

ak,n

P−1∑

p=0

ck,p,nsk(t− nT − τk,p) + ν(t) (8)

Let

ψ′k(n, t) =
P−1∑

p=0

ck,p[n]sk(t− τk,p)

and focus on the detection of user 1 (our reference user). A suboptimal but simple way to detect
user 1 symbols is to treat all other users as Gaussian white background noise and use a matched
filter for user 1 only. This approach is referred to as single-user matched filter (SUMF) detector.
The filter matched to user 1 waveform is

f1(n, t) = ψ′1(n,−t)∗ =
P−1∑

p=0

c∗1,p,ns1(−t− τ1,p)∗
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Figure 5: Block diagram of a general DS-CDMA modulator.

The SUMF output, sampled at the symbol rate, is given by

y1,n =
∫

y(t)ψ′1(t− nT )∗dt

=
P−1∑

p=0

c∗1,p,n

∫
y(t)s1(t− nT − τ1,p)∗dt

=
P−1∑

p=0

c∗1,p,n

L−1∑

`=0

s∗1,`

∫
y(t)ψ(t− nT − `Tc − τ1,p)∗dt (9)

From the last line of the above equation, we see that y1,n can be computed from the samples
output by a filter matched to the chip-shaping pulse ψ(t) taken at nT + `T + τ1,p, for all
n ∈ Z, ` = 0, . . . , L − 1 and p = 0, . . . , P − 1. Then, the DS-CDMA signal format yields the
implementation of the rake receiver represented in Fig. 6.

First, the chip-matched filter is sampled at rate Ns/Tc (Ns samples per chip). For large Ns

(typically, Ns = 4), the arbitrary path delays τ1,p can be well approximated as

τ1,p ≈ MpTc + mpTc/Ns

where Mp = bτ1,p/Tcc and where m ∈ {0, . . . , Ns− 1}. For each rake finger p, the “integer” and
“fractional” parts of the delays (MpTc and mTc/Ns, respectively) are handled differently. The
integer part is obtained by delaying the generation of the spreading sequence by Mp chips. For
periodic spreading, this means a cyclic shift of the local spreading sequence by Mp positions.
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Figure 6: Rake receiver for DS-CDMA.

The fractional part is achieved by a shift register of Ns − 1 memory elements. The p-th finger
reads the correlator input data from the mp-th memory, at the chip rate.

Then, the p-th finger correlates the chip-rate samples with the spreading sequence appropri-
ately shifted by Mp positions. The correlator output is

y1,p,n ≈
L−1∑

`=0

s∗1,`

∫
y(t)ψ(t− nT − `Tc − τ1,p)∗dt

Finally, the P finger outputs are combined via MRC, in order to obtain

y1,n =
P−1∑

p=0

c∗1,p,ny1,p,n

DS-CDMA with conventional SUMF detection is usually analyzed by making a Gaussian
approximation of the interference term at the rake output and by neglecting the self-interference
of the useful wignal with the delayed versions of itself. In brief, we assume that user k signal
received through path p is seen by the receiver of user 1 as an independent white additive
Gaussian noise with power spectral density |ck,p,n|2Ek/L. Notice the key role of the processing
gain L: without fading, each user is received with power Pk = Ek/T over a bandwidth of
approximately W = L/T Hz, because of spreading. Then, the power spectral density of each user
is approximately flat and equal to Ek/L. This explains why, for large L, DS-CDMA modulation
makes users look like extra additive white noise to each other. Subject to the above assumption,
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the interference term at each rake finger output is Gaussian with variance

NI =
1
L

K∑

k=2

Ek

P−1∑

p=0

gk,p,n

where gk,p,n = |ck,p,n|2 is the power gain of the p-th path of user k channel. The SINR at the
SUMF output (after rake combining) is given by

SINR1 =
E1

∑P−1
p=0 g1,p,n

N0 + 1
L

∑K
k=2 Ek

∑P−1
p=0 gk,p,n

(10)

Normally, DS-CDMA is considered for large systems, i.e., for systems with large L and K. We
define the system loading factor β = K/L to be the number of users per chip. From the law of
large numbers, under mild convergence conditions we have the limit in probability

lim
K→∞

1
K

K∑

k=2

Ek

P−1∑

p=0

gk,p,n =
P−1∑

p=0

E[Ekgk,p,n]

where expectation is with respect to the ensemble of the users in the system and with respect
to the (common) fading statistics. Then, for large systems we have

SINR1 =
E1

N0 + βEI

P−1∑

p=0

g1,p,n (11)

where EI =
∑P−1

p=0 E[Ekgk,p,n] is the average received energy per symbol from an interfering user.
We conclude that with the Gaussian approximation and the assumption of large system, the
performance analysis of any (coded) modulation scheme follows exactly the same lines developed
in the previous chapters for single-user systems by replacing the noise power spectral density
N0 with an equivalent noise plus interference power spectral density I0 = N0 + βEI .

It is apparent that non-orthogonal CDMA with conventional SUMF detection is interference-
limited, in the sense that even if N0 → 0, the SINR at the SUMF output for each user remains
finite. Therefore, error probability cannot be decreased beyond a certain limit by simply in-
creasing the transmitted power of all users.

4 Multiuser detection

In order to make a DS-CDMA not interference-limited, we have to exploit the structure of
interference at the receiver. The ensemble of signal-processing and decoding techniques which
exploit the structure of the interfering signals in order to combat the MAI is usually known
as Multiuser Detection (MUD) [3]. Here, we present the main algorithms in the simple case
of a synchronous DS-CDMA system with periodic spreading. This system model has mainly a
theoretical interest but serves as the basis for developing any sort of MUD algorithms. Of course,
these algorithms should then be extended to handle the time-varing multipath asynchronous
environment given in (8), typical of wireless systems.
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Figure 7: Chip-synchronous flat-fading DS-CDMA channel model.

4.1 Canonical DS-CDMA model

Consider a DS-CDMA system with K users, synchronous transmission and flat fading. The
received signal can be written as

y(t) =
K∑

k=1

√
Ek

∑
n

ck,nak,nsk(t− nT ) + ν(t) (12)

where the signature waveforms are given by (7). The average transmitted energy per symbols
of user k is Ek.

In this case, an optimal receiver front-end is provided by a chip-matched filter 1√
N0

ψ(−t)∗

whose output is sampled at the chip-rate 1/Tc (see Fig. 7). The resulting discrete-time chan-
nel can be written in vector form by collecting the L samples corresponding to each symbol
interval. We define the matrix S = [s1, . . . , sK ] ∈ CL×K containing the spreading sequences
and the diagonal matrix of complex channel amplitudes Wn = diag(w1,n, . . . , wK,n), where
wk,n = ck,n

√
Ek/N0. Then, the received vector during the n-th symbol interval is

yn = SWnan + νn (13)

where νn ∼ NC(0, I).

4.2 ML multiuser joint decoder

Each user k transmits independently selected code words xk of a given channel code Ck of length
N . We let X be the K × N matrix obtained by arranging the K user code words by row (we
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assume block-synchronous transmission). Then, the vector an of modulation symbols in (13) is
the n-th column of X.

Assuming perfect knowledge of all user spreading sequences and instantaneous SNRs, the ML
joint sequence detector is given by

X̂ = arg min
X∈C

N∑

n=1

|yn − SWnan|2 (14)

where C = C1 × . . . × CK is the Cartesian-product of all user codes. In principle, the above
decoder can be implemented by a Viterbi Algorithm acting on the Cartesian-product trellis of
the user codes. The complexity of the ML joint decoder is O(

∏K
k=1 Mk) where Mk is the number

of trellis states of code Ck. Since complexity is essentially exponential in the number of users, the
joint ML decoder is not suited to practical implementations in typical CDMA systems, where
K is generally large.

4.3 Symbol-by-symbol ML and MAP detectors

Most literature on MUD considered the suboptimal receiver scheme of Fig. 8, where a symbol-
by-symbol (sbs) detector produces “estimates” ãk,n of the user modulation symbols, that are
fed to a bank of independent channel decoders [3]. The simplest way to make use of symbol
estimates ãk,n is to produce sbs hard decisions âk,n. Next, we focus on the n-th symbol interval
and we drop index n for the sake of notation simplicity.

The main performance measures proposed for sbs-MUD are the asymptotic multiuser efficiency
(AME), the near-far resistance (NFR) and the output SINR. AME and NFR are asymptotic
(for high SNR) performance measures that apply to hard-decisions at the detector output. We
let γk = |wk|2 be the instantaneous SNR of user k. For a given k, let P su

k (γk) be the probability
of error of the optimal single-user detector for user k in the absence of MAI, for SNR equal to
γk, and let Pk(γ1, . . . , γK) be the probability of error of a given sbs-MUD detector for user k.
The AME is defined as the SNR asymptotic penalty factor payed by the sbs-MUD with respect
to the single-user optimal performance in the limit for N0 → 0. This is given by

ηk = sup
{

r ∈ [0, 1] : lim
N0→0

Pk(γ1, . . . , γK)
P su

k (rγk)
= 0

}

The NFR is given by the worst-case AME over all possible γj for j 6= k, i.e.,

η̄k = inf
γj∈R:j 6=k

ηk

In order words, the NFR measures the asymptotic SNR penalty for the worst-case interferers
SNRs. A detector for which η̄k > 0 is said to be near-far resistant. In this case, the error
probability for user k can be made arbitrarily small for any choice of the other users power,
simply by increasing user k power. If η̄k = 0, the receiver is said to be near-far non-resistant,
and user k performance is interference-limited.

If the multiuser detector provides soft estimates ãk of ak, error probability at the detector
output is rather meaningless since normally these soft-estimates are passed to a soft-decoding
algorithm without making hard decisions. In this case, a more meaningful performance measure
is the output SINR, defined by

SINRk =
|E[ãk|ak]|2
var(ãk|ak)
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Figure 8: Symbol-by-symbol MUD followed by single-user decoders

where var(ãk|ak) = E[|ãk|2|ak]− |E[ãk|ak]|2 is the conditional variance of ãk given ak.
The ML sbs detector is based on the decision rule

â = arg min
a∈AK

|y − SWa|2 (15)

where A is the modulation symbol alphabet (assumed common to all users). This detector
provides intrinsically hard decisions and minimizes the probability that â 6= a, assuming that
all users symbols are i.i.d. over A.

A different approach is to minimize the probability of error for every user k by the sbs MAP
rule

âk = arg max
a∈A

APPk(a) (16)

where the a posteriori probability APPk(a) is given by

APPk(a) = Pr(ak = a|y)

=
p(y|ak = a) Pr(ak = a)∑
b∈A p(y|ak = b) Pr(ak = b)

∝ pk(a)
∑

a∈AK
ak=a

p(y|a)
∏

j 6=k

pj(aj)

∝ pk(a)
∑

a∈AK
ak=a

exp
(−|y − SWa|2)

∏

j 6=k

pj(aj) (17)
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where pj(aj) is the a priori probability of the j-th user symbol (the a priori joint distribution of
the user symbols is assumed to be in product form, i.e., the symbols are a priori independent).
It is well-known that, if the a priori symbol distribution is uniform for all symbols, the following
approximation holds for high SNR

log APPk(a) ≈ − min
a∈AK
ak=a

|y − SWa|2 + const.

Therefore, maximizing log APPk(a) over a ∈ A for all k yields approximately the same result
as minimizing |y − SWa|2 over a ∈ AK . However, the MAP sbs detector is able to provide
also soft reliability information about the symbol decisions in the form of APPs (equivalently,
logarithms of APP, or log-likelihood ratios if data are binary). In particular, the a posteriori
minimum-mean square error (MMSE) estimate ãk of ak for the APP distribution APPk(a) is
given by the conditional mean

ãk = E[ak|y] =
∑

a∈A

aAPPk(a) (18)

The complexity of both the ML and the MAP detectors is still exponential in the number of
users K, in general.

Consider the pairwise error probability P (a → a′), where a′ differs from a in the k-th position.
We have

P (a → a′) = Pr
( |y − SWa′|2 − |y − SWa|2 < 0

∣∣a)

= Pr
(
2Re{νHSWd} > dHWHSHSWd

)

= Q

(√
1
2
dHWHRWd

)
(19)

where we let R = SHS and d = a′−a. By using a modification of the union bounding technique
it can be shown [3] that there exists finite constants CL and CU such that

CLQ(
√

ηkγk|dk|2/2) ≤ Pk(γ1, . . . , γK) ≤ CUQ(
√

ηkγk|dk|2/2)

where
ηk = min

d∈Dk

dHAHRAd (20)

In the above expression, Dk denotes the set of all normalized difference vectors d = (a′−a)/|dk|
such that dk 6= 0 and A = W/

√
γk (notice that, by definition, the vector d has k-th element

with magnitude 1 and the matrix A is diagonal with the k-th diagonal element of magnitude 1).
The AME of the ML sbs detector is difficult to calculate since it involves the minimization of

a (non-negative definite) quadratic form over a discrete and finite set of vectors. However, the
corresponding NFR is surprisingly easy to find. We have

η̄k = inf
A

min
d∈Dk

dHAHRAd

= inf
v∈CK

vk=1

vHRv

= min
u∈CK−1

{
1 + 2Re{rH

k u}+ uHRku
}

(21)
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where Rk is the (K − 1) × (K − 1) matrix obtained by eliminating the k-th row and column
from R and rk is the vector of length K − 1 obtained from the k-th column of R by eliminating
the k-th element (equal to 1). The quadratic form in the last line of (21) is minimized by
u = −R−1

k rk. By substituting this into (21) we obtain the resulting NFR

η̄k = 1− rH
k R−1

k rk (22)

By using the 2× 2 block matrix inversion lemma we can show that

η̄k =
1

[R−1]k,k
(23)

Also, the NFR can be expressed in terms of the normalized signature sequences as

η̄k = sH
k [I− Sk(SH

k Sk)−1SH
k ]sk (24)

where Sk is the L × (K − 1) matrix obtained from S by eliminating its k-th column. In order
to verify the above formula, notice that sH

k sk = 1, rk = SH
k sk and Rk = SH

k Sk, and use (22).
It is easy to verify that η̄k = 0 if and only if sk is contained in the linear span of the other

users, i.e., in the column space of Sk. In all other cases, the ML sbs detector is near-far resistant.

4.4 Linear multiuser detectors

Because of the exponential complexity of the ML and MAP sbs detectors it is meaningful
to investigate suboptimal low-complexity alternatives which still provide optimum NFR. In
particular, linear MUD for user k is defined by a filter with coefficients vector fk whose output

zk = fH
k y (25)

is used to detect user k symbol. The SUMF corresponds to the particular choice fk = sk. The
output zk of the filter is a soft estimate of the user symbol ak. If the filter output is used directly
as input of a soft decoder for user k channel, we simply let ãk = zk. As an alternative, the filter
output can be used as the input of a sbs hard detector, defined by

âk = dec(zk)

where dec(·) is any detection rule suited for user k modulation symbols. For example, in the
case of binary antipidal modulation we have âk = sign(Re{zk}).

The SINR at the output of the linear filter is given by

SINRk =
γkfH

k sksH
k fk

fH
k (I + SkWkWH

k SH
k )fk

=
γk|fH

k sk|2
|fk|2 +

∑
j 6=k γj |fH

k sj |2
(26)

where Wk is the (K − 1)× (K − 1) diagonal matrix obtained from W by deleting the k-th row
and column. The symbol error probability with hard sbs detection depends on the modulation
format and on the choice of fk. As far as performance analysis is concerned, the Gaussian
approximation can be used to model the filter output as a virtual single-user additive noise
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channel with given SNR equal to SINRk. By dividing the filter output by wkfH
k sk in order to

remove the bias, the virtual channel is given by

zk = ak + νk

where νk ∼ NC(0, I0) and I0 = 1/SINRk.
The two most common and useful design criteria for the filter fk are the zero-forcing (ZF) and

the minimum MSE (MMSE) criteria. These can be regarded as the analogous of ZF and MMSE
linear equalization for ISI channels.

ZF linear multiuser detection. The ZF linear detector (also known as decorrelator [3]) projects
the received vector y onto the orthogonal complement of the column span of Sk, and then
performs a matched filtering operation in the projected space. The resulting filter is given by

fk = α(I− Sk(SH
k Sk)−1SH

k )sk (27)

where α is any proportionality non-zero constant. It is easy to check that the AME of the ZF
linear detector is zero if and only if sk is contained in the linear span of the columns of Sk.
Otherwise, the AME is independent of γj for all j 6= k and it is equal to the optimal NFR η̄k

given by (22), (23) and (24).
The output SINR is given by

SINRk = η̄kγk (28)

Notice that since typically 0 < η̄k < 1, the ZF linear detector provides SINR degradation with
respect to a SUMF operating in the absence of MAI. Since η̄k is independent of the interferers
powers γj , j 6= k, this degradation is present even in the case of very weak MAI. In fact, in
the case where the CDMA system is noise-limited (i.e., the MAI power is much less than the
background noise power), the ZF linear detector may perform significantly worse than the SUMF.
However, in interference-limited conditions (large SNR for all users), the ZF linear detector is
near-optimal.

MMSE linear detector. The MMSE linear detector (see [3] and references therein) is the filter
fk minimizing the MSE

ε2k = E[|ak − zk|2]
By applying the orthogonality principle, we obtain the system of linear equations

E[(ak − zk)∗y] = 0

whose solution is given by the well-known linear Wiener filter

fk = wkΣ−1sk

where wk is the k-th diagonal element of W, and Σ = E[yyH ] is the covariance matrix of y.
We can obtain an alternative form for the filter fk by using the fact that

Σ = I + SWWHSH

= I + SkWkWH
k SH

k + γksksH
k

= Σk + γksksH
k (29)
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where Σk is the covariance of the noise plus interference contained in the received signal. By
applying the matrix inversion lemma to the last line of (29), we obtain

fk =
wk

1 + µk
Σ−1

k sk (30)

where µk = γksH
k Σ−1

k sk is real and positive. The resulting SINR is immediately obtained as

SINRk =
γkfH

k sksH
k fk

fH
k Σkfk

=
µ2

k/(1 + µk)2

µk/(1 + µk)2

= µk (31)

It can be shown that the MMSE linear detector achieves the maximum output SINR among all
linear detectors. Moreover, any other filter f ′k ∝ fk achieves the same optimal SINR. It can also
be shown that the MMSE linear filter converges to the ZF linear filter as N0 → 0 (therefore, it
has the same AME and NFR of ZF). However, in very noisy conditions (i.e., for large N0) the
MMSE linear filter converges to the SUMF. This illustrates intuitively the fact that the MMSE
linear detector does not suffer from the noise enhancement effect of the ZF detector.

4.5 Formulation in the matched filter output domain.

MMSE and ZF (decorrelator) detectors can be formulated in a completely equivalent way with
respect to the output of a bank of SUMFs, given by

r = SHy

= SHSWa + SHν

= RWa + n (32)

where, as already defined previously, we let R = SHS and n ∼ NC(0, N0R).
Hence, it is easy to show that the output of the ZF multiuser detector z = (z1, . . . , zK)T is

given, up to a scalar factor, by
z = W−1R−1r (33)

and the output of the MMSE linear multiuser detector is given, up to a multiplicative factor, by

z =
(
WHRW + N0I

)−1
WHr (34)

4.6 Multistage approximation of linear MUD

The MMSE and the ZF (decorrelator) linear detectors require the inversion of a L × L matrix
or of a K ×K matrix. For large L and K this might be still too complex for efficient practical
implementation.

For the sake of reducing further the computational complexity of the receiver, multistage
approximations of linear multiuser detectors have been proposed. As an example, consider
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the decorrelator formulated in the matched filter output domain (i.e., given by (33)). We let
R̃ = R− I, and use the first order Taylor expansion

1
1 + x

= 1− x + o(x)

so that
R−1 = (I + R̃)−1 ≈ I− R̃ = 2I−R

Therefore, the first-order approximated ZF detector is given by

z = W−1(2I−R)r
= W−1

(
r− (SHS− I)r

)
(35)

The last line has a simple and nice interpretation in terms of parallel interference cancellation
with linear feedback. Indeed, the output of the matched filter back r can be seen as a soft
estimate of the modulation symbols Wa. Indeed, for quasi-orthogonal spreading waveforms and
for very high SNR we have

r = SHSWa + SHν ≈ Wa

Then, the last line of (35) can be seen as a refinement of this approximation where k-th compo-
nent of z is given by

zk =
1

wk


rk −

∑

j 6=k

[R]k,jrj


 (36)

The above idea can be extended to any m-th order Taylor expansion. However, truncating an
infinite series does not provide the best approximation of a function for a given finite order m.
Then, in general the problem of finding the optimal m-th order linear detector can be formulated
as follows: given m > 0, find the weights {δ` : ` = 0, . . . , m} such that the linear detector defined
by

z =
m∑

`=0

δ`

(
WHRW

)`
WHr (37)

maximizes the output SINR for all users. Methods for finding the polynomial coefficients δ` are
proposed, for example, in [4, 5, 6].

Once the coefficients are found, the fast implementation of the multistage linear detector can
be obtained via banks of correlators and re-spreading operations. The key is Horner’s rule to
evaluate a polynomial:

p(x) =
m∑

`=0

δ`x
` = (δ0 + x(δ1 + x(δ2 + · · ·x(δm−1 + δmx))) · · · ) (38)

Then, the output z of (37) can be written as

z = (((· · · (δmWHSHSW+ δm−1I)WHSHSW+ δm−2I) · · ·+ δ1I)WHSHSW+ δ0I)WHr (39)

Notice that the multiplication WHSHSWv, where v is any K-dimensional vector, corresponds
to the direct spreading followed by summing and matched filtering block. Finally, the overall
m-th order linear detector is implemented by concatenating m such stages.
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5 Performance in the random large-system regime

The performance of linear multiuser detectors (in particular, of the SUMF, decorrelator and
MMSE filters) is characterized by the SINR at the filter output for any given user k. In general,
for a filter fk this is given by

SINRk =
|wk|2|fH

k sk|2
N0|fk|2 +

∑
j 6=k |wj |2|fH

k sj |2
(40)

It is clear that, generally speaking, the SINR depends on the received instantaneous user SNRs
γj = |wj |2/N0, on the user spreading sequences and on the receiving filter fk. If the sk’s are
randomly assigned to the users, the SINR is a random variable.

Recently it has been recognized [7, 8, 9] that in the limit of large system, i.e., for large K, L
with fixed load K/L = β, under certain convergence conditions, the SINR at the output of
SUMF, decorrelator and MMSE filters converges almost surely to the value

SINRk = γkη (41)

where η is a deterministic constant that depends on the system parameters and on the receiver.
This result is of fundamental importance since it allows the characterization of the performance
of any given user k in terms of its own individual SNR γk via a proportionality factor that
depends on the system.

Assumptions.

1. The spreading sequences sk have i.i.d. elements s`,k = 1√
L
v`,k, where v`,k are i.i.d. random

variables with mean zero, variance 1, and finite fourth order moment.

2. Let F (K)(z) denote the empirical cdf of the user received SNRs, given by

F (K)(z) =
1
K

K∑

k=1

1{γk ≤ z} (42)

We assume that as K →∞, F (K)(z) → F (z), where F (z) is a given distribution function.

Main results. As K →∞ with K/L = β, we have

1. The SINR at the output of the k-th user SUMF converges almost surely to

SINRk =
γk

1 + β
∫∞
0 zdF (z)

(43)

2. The SINR at the output of the k-th user decorrelator, for 0 ≤ β < 1, converges almost
surely to

SINRk = (1− β)γk (44)

3. The SINR at the output of the k-th user MMSE filter converges almost surely to the quan-
tity SINRk = γkη

mmse, where ηmmse is the unique non-negative solution of the equation

η =
1

1 + β
∫∞
0

z
1+ηzdF (z)

(45)
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Sketch of proof. The first fact from the theory of large random matrices that we shall use in
order to prove the above results is the following lemma and its corollary:

Lemma. Let v and A be a L-dimensional random vector and a L × L dimensional random
matrix, mutually independent, where the elements of v are i.i.d., with mean zero, variance 1
and finite fourth order moment and A has bounded spectral radius, for all L. Then, the limit

lim
L→∞

∣∣∣∣
1
L

vHAv − 1
L

tr(A)
∣∣∣∣ = 0

with probability 1.

Corollary. Suppose that the sequence of Hermitian symmetric matrices A, for increasing L, has
a limiting eigenvalue distribution, i.e., the empirical cdf of the eigenvalues {λ1, . . . , λL}, defined
by

G(L)(z) =
1
L

L∑

`=1

1{λ` ≤ z}

converges with probability 1 to a fixed distribution G(z), then with the same assumptions as
above,

lim
L→∞

1
L

vHAv = E[λ] =
∫ ∞

−∞
zdG(z)

¤
Given a cdf F (z), the Stieltjes transform of F (z) is defined by

mF (s) =
∫

1
s + z

dF (z)

in the complex half-plane Im{s} < 0. The Stieltjes transform specifies uniquely the associated
distribution F (z), and viceversa. The main fact from the theory of large random matrices that
we use in the proof is the following:

Theorem [10]. Let A ∈ CL×K be a matrix of i.i.d. random variables ai,j = vi,j/
√

L, such
that vi,j has mean zero, variance 1 and finite fourth order moment, and let Γ be a K × K
diagonal matrix with real elements γ1, . . . , γK . Assume that, as K → ∞ with K/L = β, the
empirical distribution of the γk’s, defined in (42) converges to a non-random fixed distribution
F (z). Then, the empirical distribution of the eigenvalues of the matrix M = AΓAH converges
with probability 1 to the non-random limit G(z), where the Stieltjes transform mG(s) of G(z)
is given implicitly by the solution of the equation

mG(s) =
1

s + β
∫

z
1+zmG(s)dF (z)

(46)

¤
Now, we start proving the large-system result for the SUMF. The SUMF is defined by the

filter fk = sk. The noise plus MAI covariance matrix is given by

N0

(
I + SkΓkSH

k

)
= N0Σk
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where Sk contains as columns all sj but sk, and Γk contains on the diagonal all γj ’s but γk.
Then, the SINR can be written as

SINRk =
γk|sk|2
sH
k Σksk

(47)

Notice that Σk does not contain sk, therefore, sk and Σk are independent. Hence, by the trace
lemma, we have

lim
L→∞

sH
k Σksk = lim

L→∞
1
L

tr(Σk)

where G(z) is the limiting distribution of the eigenvalues of Σk.
By inspection, we see that all eigenvalues of Σk are given by 1 + λ`, where {λ`} are the

eigenvalues of SkΓkSH
k . Hence, we have

lim
L→∞

1
L

tr(Σk) = 1 + lim
L→∞

1
L

tr(SkΓkSH
k )

= 1 + β lim
K→∞

1
K

tr(SH
k SkΓk)

= 1 + β lim
K→∞

1
K

∑

j 6=k

|sj |2γj

= 1 + β

∫
zdF (z)

where the last line follows from the strong law of large numbers, for which

lim
L→∞

|sj |2 = lim
L→∞

1
L

L∑

`=1

|v`,j |2 = E[|v`,j |2] = 1

For the same reason, the numerator in (47) converges with probability 1 to γk. Therefore, (43)
is proved.

Now, consider the SINR at the output of the decorrelator, given by (see (28)), SINRk = η̄kγk,
where

η̄k = sH
k [I− Sk(SH

k Sk)−1Sk]sk (48)

The matrix P⊥
k = [I − Sk(SH

k Sk)−1Sk] is the orthogonal projector on the subspace orthogo-
nal complement of the subspace spanned by interference. It is well-known that all orthogonal
projectors have eigenvalues either equal to one or equal to zero, and the number of non-zero
eigenvalues is equal to the dimension of the subspace. Hence, by using the trace lemma we have

lim
L→∞

η̄k = lim
L→∞

1
L

tr(P⊥
k )

= lim
L→∞

1
L

L−K+1∑

`=1

1

= 1− β

where we assumed that β < 1, otherwise the projector is not defined. Then, (44) is proved.
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Finally, for the linear MMSE we use the SINR formula (see (31)), SINRk = γksH
k Σ−1

k sk. From
the trace lemma we have

lim
L→∞

sH
k Σ−1

k sk = lim
L→∞

1
L

L∑

`=1

1
1 + λ`

=
∫

1
1 + z

dG(z)

= mG(1)

where again {λ`} are the eigenvalues of SkΓkSH
k , we used the definition of Stieltjes transform

and where G(z) is the limiting eigenvalue distribution of SkΓkSH
k . From the Theorem, mG(1)

is given by the solution of

mG(1) =
1

1 + β
∫

z
1+zmG(1)dF (z)

Hence, we have shown that in the limit for large L,K the SINR is given by γkη, where η = mG(1)
is the solution of the above equation, as desired.
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